CARDINALITY OF SETS

Definitions - MTH1 10 Review

- Let A and B be any sets. A has the same cardinality as B, if and only if there is a bijection from A and B or from B to A.
- A set is called finite if, and only if, it is the empty set or there is a bijection from $\{1,2, \ldots, n\}$ to it, where n is a positive integer. In the first case, the number of elements in the set is said to be 0 and in the second case it is said to be n . The number of elements of a finite set A is denoted $\mathrm{N}(\mathrm{A})$.
- A set that not finite is called infinite.

Properties

- Addition Rule: If $\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right\}$ is a partition of a finite set A , then

$$
N(A)=\sum_{i=1}^{n} N\left(A_{i}\right)
$$

- Difference Rule: If A is a finite set and $\mathrm{B} \subseteq \mathrm{A}$, then

$$
\mathrm{N}(\mathrm{~A}-\mathrm{B})=\mathrm{N}(\mathrm{~A})-\mathrm{N}(\mathrm{~B})
$$

- Inclusion/Exclusion Rule: If A and B are any finite sets, then

$$
\mathrm{N}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{N}(\mathrm{~A})+\mathrm{N}(\mathrm{~B})-\mathrm{N}(\mathrm{~A} \cap \mathrm{~B})
$$

COUNTING AND FUNCTIONS

Pigeonhole Principle

A function from one finite set to a smaller finite set cannot be one-to-one: There must be at least 2 elements in the domain that have the same image in the codomain.

Generalized Pigeonhole Principle

For any function f from a finite set X to a finite set Y , and for any positive integer k,
if $\mathrm{N}(\mathrm{X})>\mathrm{k} . \mathrm{N}(\mathrm{Y})$,
then $\exists \mathrm{y} \in \mathrm{Y}$ s.t. y is the image of at least $\mathrm{k}+1$ distinct elements of X .

MULTIPLICATION RULE

If an operation consists of k steps and for any i from 1 to k, the $i^{\text {th }}$ step can be performed in n_{i} ways, then the whole operation can be performed in $\prod_{i=1}^{k} n_{i}$ ways.

PERMUTATIONS AND COMBINATIONS

Permutations

- For any integer $\mathrm{n} \geq 1$, the number of permutations of a set with n elements is n !
- An r-permutation of a set of n elements is an ordered selection of r elements taken from the set of n elements. The number of r-permutations of a set of n elements is denoted $\mathrm{P}(\mathrm{n}, \mathrm{r})=\frac{n!}{(n-r)!}$

Combinations

Let n and r be non-negative integers with $\mathrm{r} \leq \mathrm{n}$.

- An r-combination of a set of n elements is a subset of r of the n elements. The symbol $\binom{n}{r}$ which is read " n choose r " denotes the number of subsets of size r (r-combinations) that can be chosen from a set of n elements.
- $\binom{n}{r}=\frac{P(n, r)}{r!}=\frac{n!}{r!(n-r)!}$

Permutations of a set with repeated elements

- If a collection consists of n objects grouped into k categories such that all the objects in the same category are indistinguishable from each other and the $\mathrm{i}^{\text {th }}$ category has n_{i} elements. Then the number of distinct permutations of the n objects is

$$
\binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}}\binom{n-n_{1}-n_{2}}{n_{3}} \ldots\binom{n-n_{1}-n_{2}-\cdots-n_{k-1}}{n_{k 3}}=\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

Combinations with repetitions allowed

- An r-combination with repetition allowed, or multiset of size r , chosen from a set $\mathrm{X}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ of n elements is an unordered selection of elements taken from X with repetition allowed. This is denoted by $\left[\mathrm{x}_{\mathrm{il}}, \ldots, \mathrm{x}_{\mathrm{ir}}\right]$ where each x_{ij} is in X and some of the x_{ij} may equal each other.
- The number of multisets of size r selected from a set of n elements is $\binom{r+n-1}{r}$

PROPERTIES OF COMBINATIONS

- For any positive integer $\mathrm{n}:\binom{n}{n}=1$ and $\binom{n}{1}=\binom{n}{n-1}=\mathrm{n}$

Combination of Complement

- Let n and r be non-negative integers with $\mathrm{r} \leq \mathrm{n}$. Then $\binom{n}{r}=\binom{n}{n-r}$ Pascal's Formula:
- $\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r}$

Binomial Theorem

- Given any real numbers a and b and any non-negative integer n ,

$$
(\mathrm{a}+\mathrm{b})^{\mathrm{n}}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

